

Welcome to the “Rudiments” manual!

[image: _images/logo.png]
Rudiments is a Python library that offers ‘miscellaneous’ functionality which
is unspecific in nature and shared among many projects. It also collects small
extensions to other support packages that don’t warrant their own project,
in the rudiments.reamed package.

Important Links

	GitHub Project [https://github.com/jhermann/rudiments]

	Issue Tracker [https://github.com/jhermann/rudiments/issues]

	PyPI [https://pypi.python.org/pypi/rudiments/]

	Latest Documentation [https://rudiments.readthedocs.io/en/latest/]

	Mailing List [http://librelist.com/browser/python.rudiments/]

Installing

Rudiments can be installed from PyPI via pip install rudiments as
usual, see releases [https://github.com/jhermann/rudiments/releases]
on GitHub for an overview of available versions – the project uses
semantic versioning [http://semver.org/] and follows
PEP 440 [https://www.python.org/dev/peps/pep-0440/] conventions.
To get a bleeding-edge version from source, use these commands:

repo="jhermann/rudiments"
pip install -r "https://raw.githubusercontent.com/$repo/master/requirements.txt"
pip install -UI -e "git+https://github.com/$repo.git#egg=${repo#*/}"

See the following section on how to create a full development environment.

Contributing

To create a working directory for this project, call these commands:

git clone "https://github.com/jhermann/rudiments.git"
cd "rudiments"
. .env --yes --develop
invoke build --docs test check

Contributing to this project is easy, and reporting an issue or
adding to the documentation also improves things for every user.
You don’t need to be a developer to contribute.
See Contribution Guidelines for more.

Documentation Contents

	Using rudiments
	Web Access Helpers

	Security Helpers
	Credentials Lookup

	Humanized Input and Output

	Python Runtime Support

	Operating System Related Extensions

	Extensions to 3rd Party Libraries

	Extensions to Click

	End-User Documentation
	Configuration of Authentication Credentials
	Credentials Lookup Details

	Installation Procedures

	Changelog

	Complete API Reference
	rudiments package
	Subpackages
	rudiments.reamed package

	Submodules

	rudiments.humanize module

	rudiments.morph module

	rudiments.pysupport module

	rudiments.security module

	rudiments.system module

	rudiments.www module

	Contribution Guidelines
	Overview
	Reporting issues

	Improving documentation

	Code contributions

	Details on contributing code
	Set up a working development environment

	Add your changes to a feature branch

	Make sure your changes work

	Software License
	Full License Text

References

Tools

	Cookiecutter [https://cookiecutter.readthedocs.io/en/latest/]

	PyInvoke [http://www.pyinvoke.org/]

	pytest [http://pytest.org/latest/contents.html]

	tox [https://tox.readthedocs.io/en/latest/]

	Pylint [http://docs.pylint.org/]

	twine [https://github.com/pypa/twine#twine]

	bpython [http://docs.bpython-interpreter.org/]

	yolk3k [https://github.com/myint/yolk#yolk]

Packages

	Rituals [https://jhermann.github.io/rituals]

Indices and Tables

	Index

	Module Index

	Search Page

Using rudiments

Web Access Helpers

The rudiments.www module helps with handling web resources.

The context manager rudiments.www.url_as_file() can be used to make the content
of an URL available as a local file, so it can be fed to things that only work with
local filesystem paths. House-keeping is automatic, so the file is removed on leaving
the context unless you removed or moved it yourself before that.

Security Helpers

Credentials Lookup

When using HTTP APIs or other secured web resources, you are confronted with the
question how to enable your users to store their credentials in a
secure but still convenient fashion.
The rudiments.security.Credentials class tries to give an answer,
by providing some common methods for credential lookup that occupy different
spots in the secure vs. convenient spectrum.
See Configuration of Authentication Credentials for details regarding usage from the viewpoint
of an end-user and some information about the availabe credential providers.

To use the class, create a rudiments.security.Credentials object,
passing in the target. Then to retrieve matching credentials, call the
rudiments.security.Credentials.auth_pair() method.

access = Credentials('http://jane@doe.example.com')
username, password = access.auth_pair()

Note that this allows to only prompt the user for a password when it’s actually needed,
but still create the credentials object early on, during some setup phase.

Humanized Input and Output

For accepting input from prompts and configuration files, and presenting values
in a form easily parsed by humans, the rudiments.humanize module offers
conversion functions for common data types.

For handling byte sizes in IEC binary units [http://physics.nist.gov/cuu/Units/binary.html], use
rudiments.humanize.bytes2iec() and rudiments.humanize.iec2bytes().
Examples:

>>> bytes2iec(1536), bytes2iec(10**9)
(u' 1.5 KiB', u' 953.7 MiB')
>>> bytes2iec(1536, compact=True)
u'1.5KiB'
>>> iec2bytes(1), iec2bytes('64k'), iec2bytes('1.234TiB')
(1, 65536, 1356797348675)

By default, the formatted values are suited for tabulated output (they’re all the same length);
when passing compact=True, you’ll get a result that better fits into log messages.

To present lists of numbers in a compact form, collapsing consecutive ranges,
rudiments.humanize.merge_adjacent() can be used.

>>> ', '. join(humanize.merge_adjacent(('9', 5, 10, 7) + tuple(range(5))))
u'0..5, 7, 9..10'

Python Runtime Support

Use the rudiments.pysupport module to access some helpers which
hide internals of the Python interpreter runtime and provide an easier to use interface.

The functions rudiments.pysupport.import_name()
and rudiments.pysupport.load_module()
can be used for dynamic imports and adding a simple plug-in system to your application.

To help with keeping code portable between Python 2.7 and 3.x,
the rudiments._compat module offers unified names and semantics
for common features that differ between current and legacy Python versions.
It is based on the module with the same name found in Jinja2 [http://jinja.pocoo.org/].

Operating System Related Extensions

In rudiments.system, you find low-level extensions to stdlib modules like
os and sys.

Constants in this module that start with EX_ are standard exit codes to be used
with sys.exit(), as defined in the C header file sysexits.h.

Extensions to 3rd Party Libraries

The sub-package rudiments.reamed contains modules that
extend the API of some outside library.

Note that you need to add the underlying package to your dependencies
in addition to rudiments, in case you use one of the modules in that sub-package.
rudiments itself does not publish any dependencies on them.

Where the extended package has a condensed public API (i.e. names are usually
only imported from the package name), these modules can serve as a drop-in
replacement, so you just have to change the import statement a little.

Extensions to Click

You can use the rudiments.reamed.click module as a drop-in replacement
for Click [http://click.pocoo.org/], like this:

from rudiments.reamed import click

There are additional helper functions: rudiments.reamed.click.pretty_path()
wraps rudiments.reamed.click.format_filename() to make a file system path
presentable to humans, especially for logging purposes.
The rudiments.reamed.click.serror() function prints an already styled, very
visible error message, while using any arguments to format the message.

The rudiments.reamed.click.LoggedFailure exception can be used when
you want to abort a command with a clearly visible error – the message is styled
identically to what serror() produces, white bold text on a red background.

rudiments.reamed.click.AliasedGroup allows you to define alias names
for commands you defined via the usual annotatons. Here is an example that maps
the ls alias to the official list command name:

from rudiments.reamed import click

class SmurfAliases(click.AliasedGroup):
 """Alias mapping for 'smurf' commands."""
 MAP = dict(
 ls='list',
)

@cli.group(cls=SmurfAliases)
def smurf():
 """Management of smurfs."""

@smurf.command(name='list')
def smurf_list():
 """A command that lists smurfs."""
 # …

Finally, the biggest addition is a default configuration parsing machinery in
the rudiments.reamed.click.Configuration class. It should be instantiated
in your root command, passing in the (optional) name of a specific configuration file,
or a path of such files.

@click.group()
@click.option('-c', '--config', "config_paths", metavar='FILE',
 multiple=True, type=click.Path(), help='Load given configuration file(s).')
@click.pass_context
def cli(ctx, config_paths=None):
 """Some command line tool."""
 config.Configuration.from_context(ctx, config_paths)

The prepared configuration object is then available to any sub-command via the context,
as ctx.obj.cfg. For more details, see the rudiments.reamed.click.Configuration
documentation.

End-User Documentation

This chapter contains instructions targeted at users of projects that are using this library, so that you can link to thse from your onw documentation.

Configuration of Authentication Credentials

Credentials Lookup Details

When using HTTP APIs or other secured web resources, you usually want to
store your credentials in a secure but still convenient fashion.
Given a target that requires authentication in the form of a username and password or API token,
the application will try several methods to find matching credentials in ‘common’ places.

For URLs (http, https, ftp, or ftps), the following steps will be taken:

	The URL’s user@pwd part is checked first and used if present.

	Next, the system’s keyring [http://pythonhosted.org/keyring/] is queried for an entry under the URL’s host name.

	Similarly, ~/.netrc is scanned for matching entries next.

	If nothing can be found, you will be prompted on the console.

As a general fallback, any given target that is not an URL will ask for a username / password pair.

The keyring and netrc file are queried for an entry matching the hostname and account name,
with the latter being taken from the URL if present, else the user’s login name is used.
This allows you to easily assume different roles on a target system,
e.g. to access a normal and a privileged account.
So for an admin account, use something like https://admin@service.example.com/
and a matching password entry for admin on service.example.com.

In netrc files, the machine entries must be unique, so the name user@host is queried before the plain host name.
This way you can provide credentials for several accounts on the same target in one file.

Installation Procedures

For using netrc files and prompting, nothing extra has to be installed,
because Python has everything needed on board.
By using keyring [http://pythonhosted.org/keyring/] credentials, you gain more security (stored passwords are
encrypted and only available after you logged in to your account), at the
possible price of installing additional software.
Consult the manual of your application whether any of the following
installation steps are actually necessary and suitable — at least the
keyring Python package will normally be included when you install
an application.

On Windows and Mac OS X, you don’t need to install extra system software,
but on a Linux system the OS package necessary for installing the dbus-python
Python package has to be made available. On Debian-type systems, that means
calling this command:

sudo apt-get install libdbus-glib-1-dev python-dev libffi-dev build-essential

For the Python packages, use pip as follows:

pip install secretstorage dbus-python keyring

For Windows and Mac OS X, only keyring is needed.
To test that you installed all supporting libraries in a Linux setup, try this:

$ python -c "import keyring; print keyring.get_keyring()"
<keyring.backends.SecretService.Keyring object at 0x7f091526bcd0>

If it doesn’t work or the essential components are not installed,
in the output you’ll get keyring.backends.fail.Keyring instead.
A successful installation on other operating systems will show
some different back-end that is not the ‘fail’ one.

On a Gnome desktop (e.g. Ubuntu 14.04 and up), the end-user application
to manage passwords is seahorse a/k/a “Passwords and Keys”.
It can be used to check that your passwords are stored correctly,
and to change and delete them.

Changelog

0.4.0 2020-03-27

	[Feature]: Windows path handling fixed

	[Feature]: Newer Click versions are now supported

	[Support]: Keyring support is disabled for now (was never very stable anyway)

	[Support]: Supported Python versions were limited to 3.5 … 3.8

0.3.0 2019-07-16

	[Feature]: replaced bunch with munch (which is maintained)

	[Feature]: click config: add optional param to section()

	[Feature]: Credentials: fall back to console prompt for anything not an URL

	[Feature]: new: rudiments.security module

	[Feature]: new: this changelog

0.2.1 2015-12-15

	[Feature]: bug: need to sort any config.d listing

	[Feature]: chg: added ‘/etc/{appname}.d/’ to default config paths

	[Feature]: new: ‘system’ module with standard process exit codes

	[Feature]: new: ‘pysupport’ module with import helpers

	[Feature]: new: ‘humanize’ module for I/O of common values in forms understood by humans

	[Feature]: new: Sphinx documentation at https://rudiments.readthedocs.org/

0.1.0 2015-04-27

	[Feature]: reamed.click extensions for Click

	[Feature]: www.url_as_file context manager

	[Feature]: TODO add missing items

Complete API Reference

The following is a complete API reference generated from source.

	rudiments package
	Subpackages
	rudiments.reamed package
	Submodules

	rudiments.reamed.click module

	Submodules

	rudiments.humanize module

	rudiments.morph module

	rudiments.pysupport module

	rudiments.security module

	rudiments.system module

	rudiments.www module

rudiments package

Rudiments – Fundamental elements for any Python project.

This package offers configuration handling and other basic helpers
for Python projects.

Copyright © 2015 - 2020 Jürgen Hermann <jh@web.de>

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Subpackages

	rudiments.reamed package
	Submodules

	rudiments.reamed.click module

Submodules

rudiments.humanize module

I/O of common values in forms understood by humans.

	
rudiments.humanize.bytes2iec(size, compact=False)

	Convert a size value in bytes to its equivalent in IEC notation.

See http://physics.nist.gov/cuu/Units/binary.html.

	Parameters

	
	size (int) – Number of bytes.

	compact (bool) – If True, the result contains no spaces.

	Returns

	String representation of size.

	Raises

	ValueError – Negative or out of bounds value for size.

	
rudiments.humanize.iec2bytes(size_spec, only_positive=True)

	Convert a size specification, optionally containing a scaling
unit in IEC notation, to a number of bytes.

	Parameters

	
	size_spec (str) – Number, optionally followed by a unit.

	only_positive (bool) – Allow only positive values?

	Returns

	Numeric bytes size.

	Raises

	ValueError – Unknown unit specifiers, or bad leading integer.

	
rudiments.humanize.merge_adjacent(numbers, indicator='..', base=0)

	Merge adjacent numbers in an iterable of numbers.

	Parameters

	
	numbers (list) – List of integers or numeric strings.

	indicator (str) – Delimiter to indicate generated ranges.

	base (int) – Passed to the int() conversion when comparing numbers.

	Returns

	Condensed sequence with either ranges or isolated numbers.

	Return type

	list of str

rudiments.morph module

Data type conversions.

rudiments.pysupport module

Python helpers + magic.

	
rudiments.pysupport.import_name(modulename, name=None)

	Import identifier name from module modulename.

If name is omitted, modulename must contain the name after the
module path, delimited by a colon.

	Parameters

	
	modulename (str) – Fully qualified module name, e.g. x.y.z.

	name (str) – Name to import from modulename.

	Returns

	Requested object.

	Return type

	object

	
rudiments.pysupport.load_module(modulename, modulepath)

	Load a Python module from a path under a specified name.

	Parameters

	
	modulename (str) – Fully qualified module name, e.g. x.y.z.

	modulepath (str) – Filename of the module.

	Returns

	Loaded module.

rudiments.security module

Security / AuthN / AuthZ helpers.

	
class rudiments.security.Credentials(target)

	Bases: object

Look up and provide authN credentials (username / password) from common sources.

	
AUTH_MEMOIZE_INPUT = {}

	

	
NETRC_FILE = None

	

	
URL_RE = re.compile('^(http|https|ftp|ftps)://')

	

	
auth_pair(force_console=False)

	Return username/password tuple, possibly prompting the user for them.

	
auth_valid()

	Return bool indicating whether full credentials were provided.

rudiments.system module

Operating system related stdlib extensions.

rudiments.www module

WWW access helpers.

You need a dependency on
requests [http://docs.python-requests.org/en/latest/api/]
in your project if you use this module.

	
rudiments.www.url_as_file(url, ext=None)

	Context manager that GETs a given url and provides it as a local file.

The file is in a closed state upon entering the context,
and removed when leaving it, if still there.

To give the file name a specific extension, use ext;
the extension can optionally include a separating dot,
otherwise it will be added.

	Parameters

	
	url (str) – URL to retrieve.

	ext (str, optional) – Extension for the generated filename.

	Yields

	str – The path to a temporary file with the content of the URL.

	Raises

	requests.RequestException – Base exception of requests, see its
 docs for more detailed ones.

Example

>>> import io, re, json
>>> with url_as_file('https://api.github.com/meta', ext='json') as meta:
... meta, json.load(io.open(meta, encoding='ascii'))['hooks']
(u'/tmp/www-api.github.com-Ba5OhD.json', [u'192.30.252.0/22'])

rudiments.reamed package

Extensions to third-party libraries.

Note that you need to add the underlying package to your
dependencies in addition to rudiments, in case you use
one of the modules in here. rudiments itself does not
publish any dependencies on them.

Where the extended package has a condensed public API (i.e.
names are usually only imported from the package name),
these modules can serve as a drop-in replacement, so you
just have to change the import statement a little.

Submodules

rudiments.reamed.click module

‘Double Click’ – Extensions to Click [http://click.pocoo.org/4/].

	
exception rudiments.reamed.click.Abort

	Bases: RuntimeError

An internal signalling exception that signals Click to abort.

	
class rudiments.reamed.click.Argument(param_decls, required=None, **attrs)

	Bases: click.core.Parameter

Arguments are positional parameters to a command. They generally
provide fewer features than options but can have infinite nargs
and are required by default.

All parameters are passed onwards to the parameter constructor.

	
add_to_parser(parser, ctx)

	

	
get_error_hint(ctx)

	Get a stringified version of the param for use in error messages to
indicate which param caused the error.

	
get_usage_pieces(ctx)

	

	
property human_readable_name

	Returns the human readable name of this parameter. This is the
same as the name for options, but the metavar for arguments.

	
make_metavar()

	

	
param_type_name = 'argument'

	

	
exception rudiments.reamed.click.BadArgumentUsage(message, ctx=None)

	Bases: click.exceptions.UsageError

Raised if an argument is generally supplied but the use of the argument
was incorrect. This is for instance raised if the number of values
for an argument is not correct.

New in version 6.0.

	
exception rudiments.reamed.click.BadOptionUsage(option_name, message, ctx=None)

	Bases: click.exceptions.UsageError

Raised if an option is generally supplied but the use of the option
was incorrect. This is for instance raised if the number of arguments
for an option is not correct.

New in version 4.0.

	Parameters

	option_name – the name of the option being used incorrectly.

	
exception rudiments.reamed.click.BadParameter(message, ctx=None, param=None, param_hint=None)

	Bases: click.exceptions.UsageError

An exception that formats out a standardized error message for a
bad parameter. This is useful when thrown from a callback or type as
Click will attach contextual information to it (for instance, which
parameter it is).

New in version 2.0.

	Parameters

	
	param – the parameter object that caused this error. This can
be left out, and Click will attach this info itself
if possible.

	param_hint – a string that shows up as parameter name. This
can be used as alternative to param in cases
where custom validation should happen. If it is
a string it’s used as such, if it’s a list then
each item is quoted and separated.

	
format_message()

	

	
class rudiments.reamed.click.BaseCommand(name, context_settings=None)

	Bases: object

The base command implements the minimal API contract of commands.
Most code will never use this as it does not implement a lot of useful
functionality but it can act as the direct subclass of alternative
parsing methods that do not depend on the Click parser.

For instance, this can be used to bridge Click and other systems like
argparse or docopt.

Because base commands do not implement a lot of the API that other
parts of Click take for granted, they are not supported for all
operations. For instance, they cannot be used with the decorators
usually and they have no built-in callback system.

Changed in version 2.0: Added the context_settings parameter.

	Parameters

	
	name – the name of the command to use unless a group overrides it.

	context_settings – an optional dictionary with defaults that are
passed to the context object.

	
allow_extra_args = False

	the default for the Context.allow_extra_args flag.

	
allow_interspersed_args = True

	the default for the Context.allow_interspersed_args flag.

	
context_settings = None

	an optional dictionary with defaults passed to the context.

	
get_help(ctx)

	

	
get_usage(ctx)

	

	
ignore_unknown_options = False

	the default for the Context.ignore_unknown_options flag.

	
invoke(ctx)

	Given a context, this invokes the command. The default
implementation is raising a not implemented error.

	
main(args=None, prog_name=None, complete_var=None, standalone_mode=True, **extra)

	This is the way to invoke a script with all the bells and
whistles as a command line application. This will always terminate
the application after a call. If this is not wanted, SystemExit
needs to be caught.

This method is also available by directly calling the instance of
a Command.

New in version 3.0: Added the standalone_mode flag to control the standalone mode.

	Parameters

	
	args – the arguments that should be used for parsing. If not
provided, sys.argv[1:] is used.

	prog_name – the program name that should be used. By default
the program name is constructed by taking the file
name from sys.argv[0].

	complete_var – the environment variable that controls the
bash completion support. The default is
"_<prog_name>_COMPLETE" with prog_name in
uppercase.

	standalone_mode – the default behavior is to invoke the script
in standalone mode. Click will then
handle exceptions and convert them into
error messages and the function will never
return but shut down the interpreter. If
this is set to False they will be
propagated to the caller and the return
value of this function is the return value
of invoke().

	extra – extra keyword arguments are forwarded to the context
constructor. See Context for more information.

	
make_context(info_name, args, parent=None, **extra)

	This function when given an info name and arguments will kick
off the parsing and create a new Context. It does not
invoke the actual command callback though.

	Parameters

	
	info_name – the info name for this invokation. Generally this
is the most descriptive name for the script or
command. For the toplevel script it’s usually
the name of the script, for commands below it it’s
the name of the script.

	args – the arguments to parse as list of strings.

	parent – the parent context if available.

	extra – extra keyword arguments forwarded to the context
constructor.

	
name = None

	the name the command thinks it has. Upon registering a command
on a Group the group will default the command name
with this information. You should instead use the
Context’s info_name attribute.

	
parse_args(ctx, args)

	Given a context and a list of arguments this creates the parser
and parses the arguments, then modifies the context as necessary.
This is automatically invoked by make_context().

	
class rudiments.reamed.click.Choice(choices, case_sensitive=True)

	Bases: click.types.ParamType

The choice type allows a value to be checked against a fixed set
of supported values. All of these values have to be strings.

You should only pass a list or tuple of choices. Other iterables
(like generators) may lead to surprising results.

The resulting value will always be one of the originally passed choices
regardless of case_sensitive or any ctx.token_normalize_func
being specified.

See choice-opts for an example.

	Parameters

	case_sensitive – Set to false to make choices case
insensitive. Defaults to true.

	
convert(value, param, ctx)

	Converts the value. This is not invoked for values that are
None (the missing value).

	
get_metavar(param)

	Returns the metavar default for this param if it provides one.

	
get_missing_message(param)

	Optionally might return extra information about a missing
parameter.

New in version 2.0.

	
name = 'choice'

	

	
exception rudiments.reamed.click.ClickException(message)

	Bases: Exception

An exception that Click can handle and show to the user.

	
exit_code = 1

	The exit code for this exception

	
format_message()

	

	
show(file=None)

	

	
class rudiments.reamed.click.Command(name, context_settings=None, callback=None, params=None, help=None, epilog=None, short_help=None, options_metavar='[OPTIONS]', add_help_option=True, no_args_is_help=False, hidden=False, deprecated=False)

	Bases: click.core.BaseCommand

Commands are the basic building block of command line interfaces in
Click. A basic command handles command line parsing and might dispatch
more parsing to commands nested below it.

Changed in version 2.0: Added the context_settings parameter.

Changed in version 7.1: Added the no_args_is_help parameter.

	Parameters

	
	name – the name of the command to use unless a group overrides it.

	context_settings – an optional dictionary with defaults that are
passed to the context object.

	callback – the callback to invoke. This is optional.

	params – the parameters to register with this command. This can
be either Option or Argument objects.

	help – the help string to use for this command.

	epilog – like the help string but it’s printed at the end of the
help page after everything else.

	short_help – the short help to use for this command. This is
shown on the command listing of the parent command.

	add_help_option – by default each command registers a --help
option. This can be disabled by this parameter.

	no_args_is_help – this controls what happens if no arguments are
provided. This option is disabled by default.
If enabled this will add --help as argument
if no arguments are passed

	hidden – hide this command from help outputs.

	deprecated – issues a message indicating that
the command is deprecated.

	
callback = None

	the callback to execute when the command fires. This might be
None in which case nothing happens.

	
collect_usage_pieces(ctx)

	Returns all the pieces that go into the usage line and returns
it as a list of strings.

	
format_epilog(ctx, formatter)

	Writes the epilog into the formatter if it exists.

	
format_help(ctx, formatter)

	Writes the help into the formatter if it exists.

This is a low-level method called by get_help().

This calls the following methods:

	format_usage()

	format_help_text()

	format_options()

	format_epilog()

	
format_help_text(ctx, formatter)

	Writes the help text to the formatter if it exists.

	
format_options(ctx, formatter)

	Writes all the options into the formatter if they exist.

	
format_usage(ctx, formatter)

	Writes the usage line into the formatter.

This is a low-level method called by get_usage().

	
get_help(ctx)

	Formats the help into a string and returns it.

Calls format_help() internally.

	
get_help_option(ctx)

	Returns the help option object.

	
get_help_option_names(ctx)

	Returns the names for the help option.

	
get_params(ctx)

	

	
get_short_help_str(limit=45)

	Gets short help for the command or makes it by shortening the
long help string.

	
get_usage(ctx)

	Formats the usage line into a string and returns it.

Calls format_usage() internally.

	
invoke(ctx)

	Given a context, this invokes the attached callback (if it exists)
in the right way.

	
make_parser(ctx)

	Creates the underlying option parser for this command.

	
params = None

	the list of parameters for this command in the order they
should show up in the help page and execute. Eager parameters
will automatically be handled before non eager ones.

	
parse_args(ctx, args)

	Given a context and a list of arguments this creates the parser
and parses the arguments, then modifies the context as necessary.
This is automatically invoked by make_context().

	
class rudiments.reamed.click.CommandCollection(name=None, sources=None, **attrs)

	Bases: click.core.MultiCommand

A command collection is a multi command that merges multiple multi
commands together into one. This is a straightforward implementation
that accepts a list of different multi commands as sources and
provides all the commands for each of them.

	
add_source(multi_cmd)

	Adds a new multi command to the chain dispatcher.

	
get_command(ctx, cmd_name)

	Given a context and a command name, this returns a
Command object if it exists or returns None.

	
list_commands(ctx)

	Returns a list of subcommand names in the order they should
appear.

	
sources = None

	The list of registered multi commands.

	
class rudiments.reamed.click.Context(command, parent=None, info_name=None, obj=None, auto_envvar_prefix=None, default_map=None, terminal_width=None, max_content_width=None, resilient_parsing=False, allow_extra_args=None, allow_interspersed_args=None, ignore_unknown_options=None, help_option_names=None, token_normalize_func=None, color=None, show_default=None)

	Bases: object

The context is a special internal object that holds state relevant
for the script execution at every single level. It’s normally invisible
to commands unless they opt-in to getting access to it.

The context is useful as it can pass internal objects around and can
control special execution features such as reading data from
environment variables.

A context can be used as context manager in which case it will call
close() on teardown.

New in version 2.0: Added the resilient_parsing, help_option_names,
token_normalize_func parameters.

New in version 3.0: Added the allow_extra_args and allow_interspersed_args
parameters.

New in version 4.0: Added the color, ignore_unknown_options, and
max_content_width parameters.

New in version 7.1: Added the show_default parameter.

	Parameters

	
	command – the command class for this context.

	parent – the parent context.

	info_name – the info name for this invocation. Generally this
is the most descriptive name for the script or
command. For the toplevel script it is usually
the name of the script, for commands below it it’s
the name of the script.

	obj – an arbitrary object of user data.

	auto_envvar_prefix – the prefix to use for automatic environment
variables. If this is None then reading
from environment variables is disabled. This
does not affect manually set environment
variables which are always read.

	default_map – a dictionary (like object) with default values
for parameters.

	terminal_width – the width of the terminal. The default is
inherit from parent context. If no context
defines the terminal width then auto
detection will be applied.

	max_content_width – the maximum width for content rendered by
Click (this currently only affects help
pages). This defaults to 80 characters if
not overridden. In other words: even if the
terminal is larger than that, Click will not
format things wider than 80 characters by
default. In addition to that, formatters might
add some safety mapping on the right.

	resilient_parsing – if this flag is enabled then Click will
parse without any interactivity or callback
invocation. Default values will also be
ignored. This is useful for implementing
things such as completion support.

	allow_extra_args – if this is set to True then extra arguments
at the end will not raise an error and will be
kept on the context. The default is to inherit
from the command.

	allow_interspersed_args – if this is set to False then options
and arguments cannot be mixed. The
default is to inherit from the command.

	ignore_unknown_options – instructs click to ignore options it does
not know and keeps them for later
processing.

	help_option_names – optionally a list of strings that define how
the default help parameter is named. The
default is ['--help'].

	token_normalize_func – an optional function that is used to
normalize tokens (options, choices,
etc.). This for instance can be used to
implement case insensitive behavior.

	color – controls if the terminal supports ANSI colors or not. The
default is autodetection. This is only needed if ANSI
codes are used in texts that Click prints which is by
default not the case. This for instance would affect
help output.

	show_default – if True, shows defaults for all options.
Even if an option is later created with show_default=False,
this command-level setting overrides it.

	
abort()

	Aborts the script.

	
allow_extra_args = None

	Indicates if the context allows extra args or if it should
fail on parsing.

New in version 3.0.

	
allow_interspersed_args = None

	Indicates if the context allows mixing of arguments and
options or not.

New in version 3.0.

	
args = None

	the leftover arguments.

	
call_on_close(f)

	This decorator remembers a function as callback that should be
executed when the context tears down. This is most useful to bind
resource handling to the script execution. For instance, file objects
opened by the File type will register their close callbacks
here.

	Parameters

	f – the function to execute on teardown.

	
close()

	Invokes all close callbacks.

	
color = None

	Controls if styling output is wanted or not.

	
command = None

	the Command for this context.

	
property command_path

	The computed command path. This is used for the usage
information on the help page. It’s automatically created by
combining the info names of the chain of contexts to the root.

	
ensure_object(object_type)

	Like find_object() but sets the innermost object to a
new instance of object_type if it does not exist.

	
exit(code=0)

	Exits the application with a given exit code.

	
fail(message)

	Aborts the execution of the program with a specific error
message.

	Parameters

	message – the error message to fail with.

	
find_object(object_type)

	Finds the closest object of a given type.

	
find_root()

	Finds the outermost context.

	
forward(**kwargs)

	Similar to invoke() but fills in default keyword
arguments from the current context if the other command expects
it. This cannot invoke callbacks directly, only other commands.

	
get_help()

	Helper method to get formatted help page for the current
context and command.

	
get_usage()

	Helper method to get formatted usage string for the current
context and command.

	
help_option_names = None

	The names for the help options.

	
ignore_unknown_options = None

	Instructs click to ignore options that a command does not
understand and will store it on the context for later
processing. This is primarily useful for situations where you
want to call into external programs. Generally this pattern is
strongly discouraged because it’s not possibly to losslessly
forward all arguments.

New in version 4.0.

	
info_name = None

	the descriptive information name

	
invoke(**kwargs)

	Invokes a command callback in exactly the way it expects. There
are two ways to invoke this method:

	the first argument can be a callback and all other arguments and
keyword arguments are forwarded directly to the function.

	the first argument is a click command object. In that case all
arguments are forwarded as well but proper click parameters
(options and click arguments) must be keyword arguments and Click
will fill in defaults.

Note that before Click 3.2 keyword arguments were not properly filled
in against the intention of this code and no context was created. For
more information about this change and why it was done in a bugfix
release see upgrade-to-3.2.

	
invoked_subcommand = None

	This flag indicates if a subcommand is going to be executed. A
group callback can use this information to figure out if it’s
being executed directly or because the execution flow passes
onwards to a subcommand. By default it’s None, but it can be
the name of the subcommand to execute.

If chaining is enabled this will be set to '*' in case
any commands are executed. It is however not possible to
figure out which ones. If you require this knowledge you
should use a resultcallback().

	
lookup_default(name)

	Looks up the default for a parameter name. This by default
looks into the default_map if available.

	
make_formatter()

	Creates the formatter for the help and usage output.

	
max_content_width = None

	The maximum width of formatted content (None implies a sensible
default which is 80 for most things).

	
property meta

	This is a dictionary which is shared with all the contexts
that are nested. It exists so that click utilities can store some
state here if they need to. It is however the responsibility of
that code to manage this dictionary well.

The keys are supposed to be unique dotted strings. For instance
module paths are a good choice for it. What is stored in there is
irrelevant for the operation of click. However what is important is
that code that places data here adheres to the general semantics of
the system.

Example usage:

LANG_KEY = f'{__name__}.lang'

def set_language(value):
 ctx = get_current_context()
 ctx.meta[LANG_KEY] = value

def get_language():
 return get_current_context().meta.get(LANG_KEY, 'en_US')

New in version 5.0.

	
obj = None

	the user object stored.

	
params = None

	the parsed parameters except if the value is hidden in which
case it’s not remembered.

	
parent = None

	the parent context or None if none exists.

	
protected_args = None

	protected arguments. These are arguments that are prepended
to args when certain parsing scenarios are encountered but
must be never propagated to another arguments. This is used
to implement nested parsing.

	
resilient_parsing = None

	Indicates if resilient parsing is enabled. In that case Click
will do its best to not cause any failures and default values
will be ignored. Useful for completion.

	
scope(cleanup=True)

	This helper method can be used with the context object to promote
it to the current thread local (see get_current_context()).
The default behavior of this is to invoke the cleanup functions which
can be disabled by setting cleanup to False. The cleanup
functions are typically used for things such as closing file handles.

If the cleanup is intended the context object can also be directly
used as a context manager.

Example usage:

with ctx.scope():
 assert get_current_context() is ctx

This is equivalent:

with ctx:
 assert get_current_context() is ctx

New in version 5.0.

	Parameters

	cleanup – controls if the cleanup functions should be run or
not. The default is to run these functions. In
some situations the context only wants to be
temporarily pushed in which case this can be disabled.
Nested pushes automatically defer the cleanup.

	
terminal_width = None

	The width of the terminal (None is autodetection).

	
token_normalize_func = None

	An optional normalization function for tokens. This is
options, choices, commands etc.

	
class rudiments.reamed.click.DateTime(formats=None)

	Bases: click.types.ParamType

The DateTime type converts date strings into datetime objects.

The format strings which are checked are configurable, but default to some
common (non-timezone aware) ISO 8601 formats.

When specifying DateTime formats, you should only pass a list or a tuple.
Other iterables, like generators, may lead to surprising results.

The format strings are processed using datetime.strptime, and this
consequently defines the format strings which are allowed.

Parsing is tried using each format, in order, and the first format which
parses successfully is used.

	Parameters

	formats – A list or tuple of date format strings, in the order in
which they should be tried. Defaults to
'%Y-%m-%d', '%Y-%m-%dT%H:%M:%S',
'%Y-%m-%d %H:%M:%S'.

	
convert(value, param, ctx)

	Converts the value. This is not invoked for values that are
None (the missing value).

	
get_metavar(param)

	Returns the metavar default for this param if it provides one.

	
name = 'datetime'

	

	
class rudiments.reamed.click.File(mode='r', encoding=None, errors='strict', lazy=None, atomic=False)

	Bases: click.types.ParamType

Declares a parameter to be a file for reading or writing. The file
is automatically closed once the context tears down (after the command
finished working).

Files can be opened for reading or writing. The special value -
indicates stdin or stdout depending on the mode.

By default, the file is opened for reading text data, but it can also be
opened in binary mode or for writing. The encoding parameter can be used
to force a specific encoding.

The lazy flag controls if the file should be opened immediately or upon
first IO. The default is to be non-lazy for standard input and output
streams as well as files opened for reading, lazy otherwise. When opening a
file lazily for reading, it is still opened temporarily for validation, but
will not be held open until first IO. lazy is mainly useful when opening
for writing to avoid creating the file until it is needed.

Starting with Click 2.0, files can also be opened atomically in which
case all writes go into a separate file in the same folder and upon
completion the file will be moved over to the original location. This
is useful if a file regularly read by other users is modified.

See file-args for more information.

	
convert(value, param, ctx)

	Converts the value. This is not invoked for values that are
None (the missing value).

	
envvar_list_splitter = ':'

	

	
name = 'filename'

	

	
resolve_lazy_flag(value)

	

	
exception rudiments.reamed.click.FileError(filename, hint=None)

	Bases: click.exceptions.ClickException

Raised if a file cannot be opened.

	
format_message()

	

	
class rudiments.reamed.click.FloatRange(min=None, max=None, clamp=False)

	Bases: click.types.FloatParamType

A parameter that works similar to click.FLOAT but restricts
the value to fit into a range. The default behavior is to fail if the
value falls outside the range, but it can also be silently clamped
between the two edges.

See ranges for an example.

	
convert(value, param, ctx)

	Converts the value. This is not invoked for values that are
None (the missing value).

	
name = 'float range'

	

	
class rudiments.reamed.click.Group(name=None, commands=None, **attrs)

	Bases: click.core.MultiCommand

A group allows a command to have subcommands attached. This is the
most common way to implement nesting in Click.

	Parameters

	commands – a dictionary of commands.

	
add_command(cmd, name=None)

	Registers another Command with this group. If the name
is not provided, the name of the command is used.

	
command(*args, **kwargs)

	A shortcut decorator for declaring and attaching a command to
the group. This takes the same arguments as command() but
immediately registers the created command with this instance by
calling into add_command().

	
commands = None

	the registered subcommands by their exported names.

	
get_command(ctx, cmd_name)

	Given a context and a command name, this returns a
Command object if it exists or returns None.

	
group(*args, **kwargs)

	A shortcut decorator for declaring and attaching a group to
the group. This takes the same arguments as group() but
immediately registers the created command with this instance by
calling into add_command().

	
list_commands(ctx)

	Returns a list of subcommand names in the order they should
appear.

	
class rudiments.reamed.click.HelpFormatter(indent_increment=2, width=None, max_width=None)

	Bases: object

This class helps with formatting text-based help pages. It’s
usually just needed for very special internal cases, but it’s also
exposed so that developers can write their own fancy outputs.

At present, it always writes into memory.

	Parameters

	
	indent_increment – the additional increment for each level.

	width – the width for the text. This defaults to the terminal
width clamped to a maximum of 78.

	
dedent()

	Decreases the indentation.

	
getvalue()

	Returns the buffer contents.

	
indent()

	Increases the indentation.

	
indentation()

	A context manager that increases the indentation.

	
section(name)

	Helpful context manager that writes a paragraph, a heading,
and the indents.

	Parameters

	name – the section name that is written as heading.

	
write(string)

	Writes a unicode string into the internal buffer.

	
write_dl(rows, col_max=30, col_spacing=2)

	Writes a definition list into the buffer. This is how options
and commands are usually formatted.

	Parameters

	
	rows – a list of two item tuples for the terms and values.

	col_max – the maximum width of the first column.

	col_spacing – the number of spaces between the first and
second column.

	
write_heading(heading)

	Writes a heading into the buffer.

	
write_paragraph()

	Writes a paragraph into the buffer.

	
write_text(text)

	Writes re-indented text into the buffer. This rewraps and
preserves paragraphs.

	
write_usage(prog, args='', prefix='Usage: ')

	Writes a usage line into the buffer.

	Parameters

	
	prog – the program name.

	args – whitespace separated list of arguments.

	prefix – the prefix for the first line.

	
class rudiments.reamed.click.IntRange(min=None, max=None, clamp=False)

	Bases: click.types.IntParamType

A parameter that works similar to click.INT but restricts
the value to fit into a range. The default behavior is to fail if the
value falls outside the range, but it can also be silently clamped
between the two edges.

See ranges for an example.

	
convert(value, param, ctx)

	Converts the value. This is not invoked for values that are
None (the missing value).

	
name = 'integer range'

	

	
exception rudiments.reamed.click.MissingParameter(message=None, ctx=None, param=None, param_hint=None, param_type=None)

	Bases: click.exceptions.BadParameter

Raised if click required an option or argument but it was not
provided when invoking the script.

New in version 4.0.

	Parameters

	param_type – a string that indicates the type of the parameter.
The default is to inherit the parameter type from
the given param. Valid values are 'parameter',
'option' or 'argument'.

	
format_message()

	

	
class rudiments.reamed.click.MultiCommand(name=None, invoke_without_command=False, no_args_is_help=None, subcommand_metavar=None, chain=False, result_callback=None, **attrs)

	Bases: click.core.Command

A multi command is the basic implementation of a command that
dispatches to subcommands. The most common version is the
Group.

	Parameters

	
	invoke_without_command – this controls how the multi command itself
is invoked. By default it’s only invoked
if a subcommand is provided.

	no_args_is_help – this controls what happens if no arguments are
provided. This option is enabled by default if
invoke_without_command is disabled or disabled
if it’s enabled. If enabled this will add
--help as argument if no arguments are
passed.

	subcommand_metavar – the string that is used in the documentation
to indicate the subcommand place.

	chain – if this is set to True chaining of multiple subcommands
is enabled. This restricts the form of commands in that
they cannot have optional arguments but it allows
multiple commands to be chained together.

	result_callback – the result callback to attach to this multi
command.

	
allow_extra_args = True

	

	
allow_interspersed_args = False

	

	
collect_usage_pieces(ctx)

	Returns all the pieces that go into the usage line and returns
it as a list of strings.

	
format_commands(ctx, formatter)

	Extra format methods for multi methods that adds all the commands
after the options.

	
format_options(ctx, formatter)

	Writes all the options into the formatter if they exist.

	
get_command(ctx, cmd_name)

	Given a context and a command name, this returns a
Command object if it exists or returns None.

	
invoke(ctx)

	Given a context, this invokes the attached callback (if it exists)
in the right way.

	
list_commands(ctx)

	Returns a list of subcommand names in the order they should
appear.

	
parse_args(ctx, args)

	Given a context and a list of arguments this creates the parser
and parses the arguments, then modifies the context as necessary.
This is automatically invoked by make_context().

	
resolve_command(ctx, args)

	

	
result_callback = None

	The result callback that is stored. This can be set or
overridden with the resultcallback() decorator.

	
resultcallback(replace=False)

	Adds a result callback to the chain command. By default if a
result callback is already registered this will chain them but
this can be disabled with the replace parameter. The result
callback is invoked with the return value of the subcommand
(or the list of return values from all subcommands if chaining
is enabled) as well as the parameters as they would be passed
to the main callback.

Example:

@click.group()
@click.option('-i', '--input', default=23)
def cli(input):
 return 42

@cli.resultcallback()
def process_result(result, input):
 return result + input

New in version 3.0.

	Parameters

	replace – if set to True an already existing result
callback will be removed.

	
exception rudiments.reamed.click.NoSuchOption(option_name, message=None, possibilities=None, ctx=None)

	Bases: click.exceptions.UsageError

Raised if click attempted to handle an option that does not
exist.

New in version 4.0.

	
format_message()

	

	
class rudiments.reamed.click.Option(param_decls=None, show_default=False, prompt=False, confirmation_prompt=False, hide_input=False, is_flag=None, flag_value=None, multiple=False, count=False, allow_from_autoenv=True, type=None, help=None, hidden=False, show_choices=True, show_envvar=False, **attrs)

	Bases: click.core.Parameter

Options are usually optional values on the command line and
have some extra features that arguments don’t have.

All other parameters are passed onwards to the parameter constructor.

	Parameters

	
	show_default – controls if the default value should be shown on the
help page. Normally, defaults are not shown. If this
value is a string, it shows the string instead of the
value. This is particularly useful for dynamic options.

	show_envvar – controls if an environment variable should be shown on
the help page. Normally, environment variables
are not shown.

	prompt – if set to True or a non empty string then the user will be
prompted for input. If set to True the prompt will be the
option name capitalized.

	confirmation_prompt – if set then the value will need to be confirmed
if it was prompted for.

	hide_input – if this is True then the input on the prompt will be
hidden from the user. This is useful for password
input.

	is_flag – forces this option to act as a flag. The default is
auto detection.

	flag_value – which value should be used for this flag if it’s
enabled. This is set to a boolean automatically if
the option string contains a slash to mark two options.

	multiple – if this is set to True then the argument is accepted
multiple times and recorded. This is similar to nargs
in how it works but supports arbitrary number of
arguments.

	count – this flag makes an option increment an integer.

	allow_from_autoenv – if this is enabled then the value of this
parameter will be pulled from an environment
variable in case a prefix is defined on the
context.

	help – the help string.

	hidden – hide this option from help outputs.

	
add_to_parser(parser, ctx)

	

	
full_process_value(ctx, value)

	

	
get_default(ctx)

	Given a context variable this calculates the default value.

	
get_help_record(ctx)

	

	
param_type_name = 'option'

	

	
prompt_for_value(ctx)

	This is an alternative flow that can be activated in the full
value processing if a value does not exist. It will prompt the
user until a valid value exists and then returns the processed
value as result.

	
resolve_envvar_value(ctx)

	

	
value_from_envvar(ctx)

	

	
class rudiments.reamed.click.OptionParser(ctx=None)

	Bases: object

The option parser is an internal class that is ultimately used to
parse options and arguments. It’s modelled after optparse and brings
a similar but vastly simplified API. It should generally not be used
directly as the high level Click classes wrap it for you.

It’s not nearly as extensible as optparse or argparse as it does not
implement features that are implemented on a higher level (such as
types or defaults).

	Parameters

	ctx – optionally the Context where this parser
should go with.

	
add_argument(dest, nargs=1, obj=None)

	Adds a positional argument named dest to the parser.

The obj can be used to identify the option in the order list
that is returned from the parser.

	
add_option(opts, dest, action=None, nargs=1, const=None, obj=None)

	Adds a new option named dest to the parser. The destination
is not inferred (unlike with optparse) and needs to be explicitly
provided. Action can be any of store, store_const,
append, appnd_const or count.

The obj can be used to identify the option in the order list
that is returned from the parser.

	
allow_interspersed_args = None

	This controls how the parser deals with interspersed arguments.
If this is set to False, the parser will stop on the first
non-option. Click uses this to implement nested subcommands
safely.

	
ctx = None

	The Context for this parser. This might be
None for some advanced use cases.

	
ignore_unknown_options = None

	This tells the parser how to deal with unknown options. By
default it will error out (which is sensible), but there is a
second mode where it will ignore it and continue processing
after shifting all the unknown options into the resulting args.

	
parse_args(args)

	Parses positional arguments and returns (values, args, order)
for the parsed options and arguments as well as the leftover
arguments if there are any. The order is a list of objects as they
appear on the command line. If arguments appear multiple times they
will be memorized multiple times as well.

	
class rudiments.reamed.click.ParamType

	Bases: object

Helper for converting values through types. The following is
necessary for a valid type:

	it needs a name

	it needs to pass through None unchanged

	it needs to convert from a string

	it needs to convert its result type through unchanged
(eg: needs to be idempotent)

	it needs to be able to deal with param and context being None.
This can be the case when the object is used with prompt
inputs.

	
convert(value, param, ctx)

	Converts the value. This is not invoked for values that are
None (the missing value).

	
envvar_list_splitter = None

	if a list of this type is expected and the value is pulled from a
string environment variable, this is what splits it up. None
means any whitespace. For all parameters the general rule is that
whitespace splits them up. The exception are paths and files which
are split by os.path.pathsep by default (“:” on Unix and “;” on
Windows).

	
fail(message, param=None, ctx=None)

	Helper method to fail with an invalid value message.

	
get_metavar(param)

	Returns the metavar default for this param if it provides one.

	
get_missing_message(param)

	Optionally might return extra information about a missing
parameter.

New in version 2.0.

	
is_composite = False

	

	
name = None

	the descriptive name of this type

	
split_envvar_value(rv)

	Given a value from an environment variable this splits it up
into small chunks depending on the defined envvar list splitter.

If the splitter is set to None, which means that whitespace splits,
then leading and trailing whitespace is ignored. Otherwise, leading
and trailing splitters usually lead to empty items being included.

	
class rudiments.reamed.click.Parameter(param_decls=None, type=None, required=False, default=None, callback=None, nargs=None, metavar=None, expose_value=True, is_eager=False, envvar=None, autocompletion=None)

	Bases: object

A parameter to a command comes in two versions: they are either
Options or Arguments. Other subclasses are currently
not supported by design as some of the internals for parsing are
intentionally not finalized.

Some settings are supported by both options and arguments.

	Parameters

	
	param_decls – the parameter declarations for this option or
argument. This is a list of flags or argument
names.

	type – the type that should be used. Either a ParamType
or a Python type. The later is converted into the former
automatically if supported.

	required – controls if this is optional or not.

	default – the default value if omitted. This can also be a callable,
in which case it’s invoked when the default is needed
without any arguments.

	callback – a callback that should be executed after the parameter
was matched. This is called as fn(ctx, param,
value) and needs to return the value.

	nargs – the number of arguments to match. If not 1 the return
value is a tuple instead of single value. The default for
nargs is 1 (except if the type is a tuple, then it’s
the arity of the tuple).

	metavar – how the value is represented in the help page.

	expose_value – if this is True then the value is passed onwards
to the command callback and stored on the context,
otherwise it’s skipped.

	is_eager – eager values are processed before non eager ones. This
should not be set for arguments or it will inverse the
order of processing.

	envvar – a string or list of strings that are environment variables
that should be checked.

Changed in version 7.1: Empty environment variables are ignored rather than taking the
empty string value. This makes it possible for scripts to clear
variables if they can’t unset them.

Changed in version 2.0: Changed signature for parameter callback to also be passed the
parameter. The old callback format will still work, but it will
raise a warning to give you a chance to migrate the code easier.

	
add_to_parser(parser, ctx)

	

	
consume_value(ctx, opts)

	

	
full_process_value(ctx, value)

	

	
get_default(ctx)

	Given a context variable this calculates the default value.

	
get_error_hint(ctx)

	Get a stringified version of the param for use in error messages to
indicate which param caused the error.

	
get_help_record(ctx)

	

	
get_usage_pieces(ctx)

	

	
handle_parse_result(ctx, opts, args)

	

	
property human_readable_name

	Returns the human readable name of this parameter. This is the
same as the name for options, but the metavar for arguments.

	
make_metavar()

	

	
param_type_name = 'parameter'

	

	
process_value(ctx, value)

	Given a value and context this runs the logic to convert the
value as necessary.

	
resolve_envvar_value(ctx)

	

	
type_cast_value(ctx, value)

	Given a value this runs it properly through the type system.
This automatically handles things like nargs and multiple as
well as composite types.

	
value_from_envvar(ctx)

	

	
value_is_missing(value)

	

	
class rudiments.reamed.click.Path(exists=False, file_okay=True, dir_okay=True, writable=False, readable=True, resolve_path=False, allow_dash=False, path_type=None)

	Bases: click.types.ParamType

The path type is similar to the File type but it performs
different checks. First of all, instead of returning an open file
handle it returns just the filename. Secondly, it can perform various
basic checks about what the file or directory should be.

Changed in version 6.0: allow_dash was added.

	Parameters

	
	exists – if set to true, the file or directory needs to exist for
this value to be valid. If this is not required and a
file does indeed not exist, then all further checks are
silently skipped.

	file_okay – controls if a file is a possible value.

	dir_okay – controls if a directory is a possible value.

	writable – if true, a writable check is performed.

	readable – if true, a readable check is performed.

	resolve_path – if this is true, then the path is fully resolved
before the value is passed onwards. This means
that it’s absolute and symlinks are resolved. It
will not expand a tilde-prefix, as this is
supposed to be done by the shell only.

	allow_dash – If this is set to True, a single dash to indicate
standard streams is permitted.

	path_type – optionally a string type that should be used to
represent the path. The default is None which
means the return value will be either bytes or
unicode depending on what makes most sense given the
input data Click deals with.

	
coerce_path_result(rv)

	

	
convert(value, param, ctx)

	Converts the value. This is not invoked for values that are
None (the missing value).

	
envvar_list_splitter = ':'

	

	
class rudiments.reamed.click.Tuple(types)

	Bases: click.types.CompositeParamType

The default behavior of Click is to apply a type on a value directly.
This works well in most cases, except for when nargs is set to a fixed
count and different types should be used for different items. In this
case the Tuple type can be used. This type can only be used
if nargs is set to a fixed number.

For more information see tuple-type.

This can be selected by using a Python tuple literal as a type.

	Parameters

	types – a list of types that should be used for the tuple items.

	
property arity

	

	
convert(value, param, ctx)

	Converts the value. This is not invoked for values that are
None (the missing value).

	
property name

	

	
exception rudiments.reamed.click.UsageError(message, ctx=None)

	Bases: click.exceptions.ClickException

An internal exception that signals a usage error. This typically
aborts any further handling.

	Parameters

	
	message – the error message to display.

	ctx – optionally the context that caused this error. Click will
fill in the context automatically in some situations.

	
exit_code = 2

	

	
show(file=None)

	

	
rudiments.reamed.click.argument(*param_decls, **attrs)

	Attaches an argument to the command. All positional arguments are
passed as parameter declarations to Argument; all keyword
arguments are forwarded unchanged (except cls).
This is equivalent to creating an Argument instance manually
and attaching it to the Command.params list.

	Parameters

	cls – the argument class to instantiate. This defaults to
Argument.

	
rudiments.reamed.click.clear()

	Clears the terminal screen. This will have the effect of clearing
the whole visible space of the terminal and moving the cursor to the
top left. This does not do anything if not connected to a terminal.

New in version 2.0.

	
rudiments.reamed.click.command(name=None, cls=None, **attrs)

	Creates a new Command and uses the decorated function as
callback. This will also automatically attach all decorated
option()s and argument()s as parameters to the command.

The name of the command defaults to the name of the function with
underscores replaced by dashes. If you want to change that, you can
pass the intended name as the first argument.

All keyword arguments are forwarded to the underlying command class.

Once decorated the function turns into a Command instance
that can be invoked as a command line utility or be attached to a
command Group.

	Parameters

	
	name – the name of the command. This defaults to the function
name with underscores replaced by dashes.

	cls – the command class to instantiate. This defaults to
Command.

	
rudiments.reamed.click.confirm(text, default=False, abort=False, prompt_suffix=': ', show_default=True, err=False)

	Prompts for confirmation (yes/no question).

If the user aborts the input by sending a interrupt signal this
function will catch it and raise a Abort exception.

New in version 4.0: Added the err parameter.

	Parameters

	
	text – the question to ask.

	default – the default for the prompt.

	abort – if this is set to True a negative answer aborts the
exception by raising Abort.

	prompt_suffix – a suffix that should be added to the prompt.

	show_default – shows or hides the default value in the prompt.

	err – if set to true the file defaults to stderr instead of
stdout, the same as with echo.

	
rudiments.reamed.click.confirmation_option(*param_decls, **attrs)

	Shortcut for confirmation prompts that can be ignored by passing
--yes as parameter.

This is equivalent to decorating a function with option() with
the following parameters:

def callback(ctx, param, value):
 if not value:
 ctx.abort()

@click.command()
@click.option('--yes', is_flag=True, callback=callback,
 expose_value=False, prompt='Do you want to continue?')
def dropdb():
 pass

	
rudiments.reamed.click.echo(message=None, file=None, nl=True, err=False, color=None)

	Prints a message plus a newline to the given file or stdout. On
first sight, this looks like the print function, but it has improved
support for handling Unicode and binary data that does not fail no
matter how badly configured the system is.

Primarily it means that you can print binary data as well as Unicode
data on both 2.x and 3.x to the given file in the most appropriate way
possible. This is a very carefree function in that it will try its
best to not fail. As of Click 6.0 this includes support for unicode
output on the Windows console.

In addition to that, if colorama [https://pypi.org/project/colorama/] is installed, the echo function will
also support clever handling of ANSI codes. Essentially it will then
do the following:

	add transparent handling of ANSI color codes on Windows.

	hide ANSI codes automatically if the destination file is not a
terminal.

Changed in version 6.0: As of Click 6.0 the echo function will properly support unicode
output on the windows console. Not that click does not modify
the interpreter in any way which means that sys.stdout or the
print statement or function will still not provide unicode support.

Changed in version 2.0: Starting with version 2.0 of Click, the echo function will work
with colorama if it’s installed.

New in version 3.0: The err parameter was added.

Changed in version 4.0: Added the color flag.

	Parameters

	
	message – the message to print

	file – the file to write to (defaults to stdout)

	err – if set to true the file defaults to stderr instead of
stdout. This is faster and easier than calling
get_text_stderr() yourself.

	nl – if set to True (the default) a newline is printed afterwards.

	color – controls if the terminal supports ANSI colors or not. The
default is autodetection.

	
rudiments.reamed.click.echo_via_pager(text_or_generator, color=None)

	This function takes a text and shows it via an environment specific
pager on stdout.

Changed in version 3.0: Added the color flag.

	Parameters

	
	text_or_generator – the text to page, or alternatively, a
generator emitting the text to page.

	color – controls if the pager supports ANSI colors or not. The
default is autodetection.

	
rudiments.reamed.click.edit(text=None, editor=None, env=None, require_save=True, extension='.txt', filename=None)

	Edits the given text in the defined editor. If an editor is given
(should be the full path to the executable but the regular operating
system search path is used for finding the executable) it overrides
the detected editor. Optionally, some environment variables can be
used. If the editor is closed without changes, None is returned. In
case a file is edited directly the return value is always None and
require_save and extension are ignored.

If the editor cannot be opened a UsageError is raised.

Note for Windows: to simplify cross-platform usage, the newlines are
automatically converted from POSIX to Windows and vice versa. As such,
the message here will have \n as newline markers.

	Parameters

	
	text – the text to edit.

	editor – optionally the editor to use. Defaults to automatic
detection.

	env – environment variables to forward to the editor.

	require_save – if this is true, then not saving in the editor
will make the return value become None.

	extension – the extension to tell the editor about. This defaults
to .txt but changing this might change syntax
highlighting.

	filename – if provided it will edit this file instead of the
provided text contents. It will not use a temporary
file as an indirection in that case.

	
rudiments.reamed.click.format_filename(filename, shorten=False)

	Formats a filename for user display. The main purpose of this
function is to ensure that the filename can be displayed at all. This
will decode the filename to unicode if necessary in a way that it will
not fail. Optionally, it can shorten the filename to not include the
full path to the filename.

	Parameters

	
	filename – formats a filename for UI display. This will also convert
the filename into unicode without failing.

	shorten – this optionally shortens the filename to strip of the
path that leads up to it.

	
rudiments.reamed.click.get_app_dir(app_name, roaming=True, force_posix=False)

	Returns the config folder for the application. The default behavior
is to return whatever is most appropriate for the operating system.

To give you an idea, for an app called "Foo Bar", something like
the following folders could be returned:

	Mac OS X:
	~/Library/Application Support/Foo Bar

	Mac OS X (POSIX):
	~/.foo-bar

	Unix:
	~/.config/foo-bar

	Unix (POSIX):
	~/.foo-bar

	Win XP (roaming):
	C:\Documents and Settings\<user>\Local Settings\Application Data\Foo Bar

	Win XP (not roaming):
	C:\Documents and Settings\<user>\Application Data\Foo Bar

	Win 7 (roaming):
	C:\Users\<user>\AppData\Roaming\Foo Bar

	Win 7 (not roaming):
	C:\Users\<user>\AppData\Local\Foo Bar

New in version 2.0.

	Parameters

	
	app_name – the application name. This should be properly capitalized
and can contain whitespace.

	roaming – controls if the folder should be roaming or not on Windows.
Has no affect otherwise.

	force_posix – if this is set to True then on any POSIX system the
folder will be stored in the home folder with a leading
dot instead of the XDG config home or darwin’s
application support folder.

	
rudiments.reamed.click.get_binary_stream(name)

	Returns a system stream for byte processing. This essentially
returns the stream from the sys module with the given name but it
solves some compatibility issues between different Python versions.
Primarily this function is necessary for getting binary streams on
Python 3.

	Parameters

	name – the name of the stream to open. Valid names are 'stdin',
'stdout' and 'stderr'

	
rudiments.reamed.click.get_current_context(silent=False)

	Returns the current click context. This can be used as a way to
access the current context object from anywhere. This is a more implicit
alternative to the pass_context() decorator. This function is
primarily useful for helpers such as echo() which might be
interested in changing its behavior based on the current context.

To push the current context, Context.scope() can be used.

New in version 5.0.

	Parameters

	silent – if set to True the return value is None if no context
is available. The default behavior is to raise a
RuntimeError.

	
rudiments.reamed.click.get_os_args()

	This returns the argument part of sys.argv in the most appropriate
form for processing. What this means is that this return value is in
a format that works for Click to process but does not necessarily
correspond well to what’s actually standard for the interpreter.

On most environments the return value is sys.argv[:1] unchanged.
However if you are on Windows and running Python 2 the return value
will actually be a list of unicode strings instead because the
default behavior on that platform otherwise will not be able to
carry all possible values that sys.argv can have.

New in version 6.0.

	
rudiments.reamed.click.get_terminal_size()

	Returns the current size of the terminal as tuple in the form
(width, height) in columns and rows.

	
rudiments.reamed.click.get_text_stream(name, encoding=None, errors='strict')

	Returns a system stream for text processing. This usually returns
a wrapped stream around a binary stream returned from
get_binary_stream() but it also can take shortcuts on Python 3
for already correctly configured streams.

	Parameters

	
	name – the name of the stream to open. Valid names are 'stdin',
'stdout' and 'stderr'

	encoding – overrides the detected default encoding.

	errors – overrides the default error mode.

	
rudiments.reamed.click.getchar(echo=False)

	Fetches a single character from the terminal and returns it. This
will always return a unicode character and under certain rare
circumstances this might return more than one character. The
situations which more than one character is returned is when for
whatever reason multiple characters end up in the terminal buffer or
standard input was not actually a terminal.

Note that this will always read from the terminal, even if something
is piped into the standard input.

Note for Windows: in rare cases when typing non-ASCII characters, this
function might wait for a second character and then return both at once.
This is because certain Unicode characters look like special-key markers.

New in version 2.0.

	Parameters

	echo – if set to True, the character read will also show up on
the terminal. The default is to not show it.

	
rudiments.reamed.click.group(name=None, **attrs)

	Creates a new Group with a function as callback. This
works otherwise the same as command() just that the cls
parameter is set to Group.

	
rudiments.reamed.click.help_option(*param_decls, **attrs)

	Adds a --help option which immediately ends the program
printing out the help page. This is usually unnecessary to add as
this is added by default to all commands unless suppressed.

Like version_option(), this is implemented as eager option that
prints in the callback and exits.

All arguments are forwarded to option().

	
rudiments.reamed.click.launch(url, wait=False, locate=False)

	This function launches the given URL (or filename) in the default
viewer application for this file type. If this is an executable, it
might launch the executable in a new session. The return value is
the exit code of the launched application. Usually, 0 indicates
success.

Examples:

click.launch('https://click.palletsprojects.com/')
click.launch('/my/downloaded/file', locate=True)

New in version 2.0.

	Parameters

	
	url – URL or filename of the thing to launch.

	wait – waits for the program to stop.

	locate – if this is set to True then instead of launching the
application associated with the URL it will attempt to
launch a file manager with the file located. This
might have weird effects if the URL does not point to
the filesystem.

	
rudiments.reamed.click.make_pass_decorator(object_type, ensure=False)

	Given an object type this creates a decorator that will work
similar to pass_obj() but instead of passing the object of the
current context, it will find the innermost context of type
object_type().

This generates a decorator that works roughly like this:

from functools import update_wrapper

def decorator(f):
 @pass_context
 def new_func(ctx, *args, **kwargs):
 obj = ctx.find_object(object_type)
 return ctx.invoke(f, obj, *args, **kwargs)
 return update_wrapper(new_func, f)
return decorator

	Parameters

	
	object_type – the type of the object to pass.

	ensure – if set to True, a new object will be created and
remembered on the context if it’s not there yet.

	
rudiments.reamed.click.open_file(filename, mode='r', encoding=None, errors='strict', lazy=False, atomic=False)

	This is similar to how the File works but for manual
usage. Files are opened non lazy by default. This can open regular
files as well as stdin/stdout if '-' is passed.

If stdin/stdout is returned the stream is wrapped so that the context
manager will not close the stream accidentally. This makes it possible
to always use the function like this without having to worry to
accidentally close a standard stream:

with open_file(filename) as f:
 ...

New in version 3.0.

	Parameters

	
	filename – the name of the file to open (or '-' for stdin/stdout).

	mode – the mode in which to open the file.

	encoding – the encoding to use.

	errors – the error handling for this file.

	lazy – can be flipped to true to open the file lazily.

	atomic – in atomic mode writes go into a temporary file and it’s
moved on close.

	
rudiments.reamed.click.option(*param_decls, **attrs)

	Attaches an option to the command. All positional arguments are
passed as parameter declarations to Option; all keyword
arguments are forwarded unchanged (except cls).
This is equivalent to creating an Option instance manually
and attaching it to the Command.params list.

	Parameters

	cls – the option class to instantiate. This defaults to
Option.

	
rudiments.reamed.click.pass_context(f)

	Marks a callback as wanting to receive the current context
object as first argument.

	
rudiments.reamed.click.pass_obj(f)

	Similar to pass_context(), but only pass the object on the
context onwards (Context.obj). This is useful if that object
represents the state of a nested system.

	
rudiments.reamed.click.password_option(*param_decls, **attrs)

	Shortcut for password prompts.

This is equivalent to decorating a function with option() with
the following parameters:

@click.command()
@click.option('--password', prompt=True, confirmation_prompt=True,
 hide_input=True)
def changeadmin(password):
 pass

	
rudiments.reamed.click.pause(info='Press any key to continue ...', err=False)

	This command stops execution and waits for the user to press any
key to continue. This is similar to the Windows batch “pause”
command. If the program is not run through a terminal, this command
will instead do nothing.

New in version 2.0.

New in version 4.0: Added the err parameter.

	Parameters

	
	info – the info string to print before pausing.

	err – if set to message goes to stderr instead of
stdout, the same as with echo.

	
rudiments.reamed.click.progressbar(iterable=None, length=None, label=None, show_eta=True, show_percent=None, show_pos=False, item_show_func=None, fill_char='#', empty_char='-', bar_template='%(label)s [%(bar)s] %(info)s', info_sep=' ', width=36, file=None, color=None)

	This function creates an iterable context manager that can be used
to iterate over something while showing a progress bar. It will
either iterate over the iterable or length items (that are counted
up). While iteration happens, this function will print a rendered
progress bar to the given file (defaults to stdout) and will attempt
to calculate remaining time and more. By default, this progress bar
will not be rendered if the file is not a terminal.

The context manager creates the progress bar. When the context
manager is entered the progress bar is already created. With every
iteration over the progress bar, the iterable passed to the bar is
advanced and the bar is updated. When the context manager exits,
a newline is printed and the progress bar is finalized on screen.

Note: The progress bar is currently designed for use cases where the
total progress can be expected to take at least several seconds.
Because of this, the ProgressBar class object won’t display
progress that is considered too fast, and progress where the time
between steps is less than a second.

No printing must happen or the progress bar will be unintentionally
destroyed.

Example usage:

with progressbar(items) as bar:
 for item in bar:
 do_something_with(item)

Alternatively, if no iterable is specified, one can manually update the
progress bar through the update() method instead of directly
iterating over the progress bar. The update method accepts the number
of steps to increment the bar with:

with progressbar(length=chunks.total_bytes) as bar:
 for chunk in chunks:
 process_chunk(chunk)
 bar.update(chunks.bytes)

New in version 2.0.

New in version 4.0: Added the color parameter. Added a update method to the
progressbar object.

	Parameters

	
	iterable – an iterable to iterate over. If not provided the length
is required.

	length – the number of items to iterate over. By default the
progressbar will attempt to ask the iterator about its
length, which might or might not work. If an iterable is
also provided this parameter can be used to override the
length. If an iterable is not provided the progress bar
will iterate over a range of that length.

	label – the label to show next to the progress bar.

	show_eta – enables or disables the estimated time display. This is
automatically disabled if the length cannot be
determined.

	show_percent – enables or disables the percentage display. The
default is True if the iterable has a length or
False if not.

	show_pos – enables or disables the absolute position display. The
default is False.

	item_show_func – a function called with the current item which
can return a string to show the current item
next to the progress bar. Note that the current
item can be None!

	fill_char – the character to use to show the filled part of the
progress bar.

	empty_char – the character to use to show the non-filled part of
the progress bar.

	bar_template – the format string to use as template for the bar.
The parameters in it are label for the label,
bar for the progress bar and info for the
info section.

	info_sep – the separator between multiple info items (eta etc.)

	width – the width of the progress bar in characters, 0 means full
terminal width

	file – the file to write to. If this is not a terminal then
only the label is printed.

	color – controls if the terminal supports ANSI colors or not. The
default is autodetection. This is only needed if ANSI
codes are included anywhere in the progress bar output
which is not the case by default.

	
rudiments.reamed.click.prompt(text, default=None, hide_input=False, confirmation_prompt=False, type=None, value_proc=None, prompt_suffix=': ', show_default=True, err=False, show_choices=True)

	Prompts a user for input. This is a convenience function that can
be used to prompt a user for input later.

If the user aborts the input by sending a interrupt signal, this
function will catch it and raise a Abort exception.

New in version 7.0: Added the show_choices parameter.

New in version 6.0: Added unicode support for cmd.exe on Windows.

New in version 4.0: Added the err parameter.

	Parameters

	
	text – the text to show for the prompt.

	default – the default value to use if no input happens. If this
is not given it will prompt until it’s aborted.

	hide_input – if this is set to true then the input value will
be hidden.

	confirmation_prompt – asks for confirmation for the value.

	type – the type to use to check the value against.

	value_proc – if this parameter is provided it’s a function that
is invoked instead of the type conversion to
convert a value.

	prompt_suffix – a suffix that should be added to the prompt.

	show_default – shows or hides the default value in the prompt.

	err – if set to true the file defaults to stderr instead of
stdout, the same as with echo.

	show_choices – Show or hide choices if the passed type is a Choice.
For example if type is a Choice of either day or week,
show_choices is true and text is “Group by” then the
prompt will be “Group by (day, week): “.

	
rudiments.reamed.click.secho(message=None, file=None, nl=True, err=False, color=None, **styles)

	This function combines echo() and style() into one
call. As such the following two calls are the same:

click.secho('Hello World!', fg='green')
click.echo(click.style('Hello World!', fg='green'))

All keyword arguments are forwarded to the underlying functions
depending on which one they go with.

New in version 2.0.

	
rudiments.reamed.click.style(text, fg=None, bg=None, bold=None, dim=None, underline=None, blink=None, reverse=None, reset=True)

	Styles a text with ANSI styles and returns the new string. By
default the styling is self contained which means that at the end
of the string a reset code is issued. This can be prevented by
passing reset=False.

Examples:

click.echo(click.style('Hello World!', fg='green'))
click.echo(click.style('ATTENTION!', blink=True))
click.echo(click.style('Some things', reverse=True, fg='cyan'))

Supported color names:

	black (might be a gray)

	red

	green

	yellow (might be an orange)

	blue

	magenta

	cyan

	white (might be light gray)

	bright_black

	bright_red

	bright_green

	bright_yellow

	bright_blue

	bright_magenta

	bright_cyan

	bright_white

	reset (reset the color code only)

New in version 2.0.

New in version 7.0: Added support for bright colors.

	Parameters

	
	text – the string to style with ansi codes.

	fg – if provided this will become the foreground color.

	bg – if provided this will become the background color.

	bold – if provided this will enable or disable bold mode.

	dim – if provided this will enable or disable dim mode. This is
badly supported.

	underline – if provided this will enable or disable underline.

	blink – if provided this will enable or disable blinking.

	reverse – if provided this will enable or disable inverse
rendering (foreground becomes background and the
other way round).

	reset – by default a reset-all code is added at the end of the
string which means that styles do not carry over. This
can be disabled to compose styles.

	
rudiments.reamed.click.unstyle(text)

	Removes ANSI styling information from a string. Usually it’s not
necessary to use this function as Click’s echo function will
automatically remove styling if necessary.

New in version 2.0.

	Parameters

	text – the text to remove style information from.

	
rudiments.reamed.click.version_option(version=None, *param_decls, **attrs)

	Adds a --version option which immediately ends the program
printing out the version number. This is implemented as an eager
option that prints the version and exits the program in the callback.

	Parameters

	
	version – the version number to show. If not provided Click
attempts an auto discovery via setuptools.

	prog_name – the name of the program (defaults to autodetection)

	message – custom message to show instead of the default
('%(prog)s, version %(version)s')

	others – everything else is forwarded to option().

	
rudiments.reamed.click.wrap_text(text, width=78, initial_indent='', subsequent_indent='', preserve_paragraphs=False)

	A helper function that intelligently wraps text. By default, it
assumes that it operates on a single paragraph of text but if the
preserve_paragraphs parameter is provided it will intelligently
handle paragraphs (defined by two empty lines).

If paragraphs are handled, a paragraph can be prefixed with an empty
line containing the \b character (\x08) to indicate that
no rewrapping should happen in that block.

	Parameters

	
	text – the text that should be rewrapped.

	width – the maximum width for the text.

	initial_indent – the initial indent that should be placed on the
first line as a string.

	subsequent_indent – the indent string that should be placed on
each consecutive line.

	preserve_paragraphs – if this flag is set then the wrapping will
intelligently handle paragraphs.

	
rudiments.reamed.click.pretty_path(path, _home_re=re.compile('^/home/docs/'))

	Prettify path for humans, and make it Unicode.

	
rudiments.reamed.click.serror(message, *args, **kwargs)

	Print a styled error message, while using any arguments to format the message.

	
exception rudiments.reamed.click.LoggedFailure(message)

	Bases: click.exceptions.UsageError

Report a failure condition to the user.

	
class rudiments.reamed.click.AliasedGroup(name=None, commands=None, **attrs)

	Bases: click.core.Group

A command group with alias names.

Inherit from this class and define a MAP class variable,
which is a mapping from alias names to canonical command names.
Then use that derived class as the cls parameter for a
click.group decorator.

	
MAP = {}

	

	
get_command(ctx, cmd_name)

	Map some aliases to their ‘real’ names.

	
class rudiments.reamed.click.Configuration(name, config_paths=None, project=None)

	Bases: object

Configuration container that is initialized early in the main command.

The default instance is available via the Click context as ctx.obj.cfg.
Configuration is lazily loaded, on first access.

	
DEFAULT_CONFIG_OPTS = {'default_encoding': 'utf-8', 'encoding': 'utf-8'}

	

	
DEFAULT_PATH = ['/etc/{appname}.conf', '/etc/{appname}.d/', '{appcfg}.conf']

	

	
NO_DEFAULT = <object object>

	

	
dump(to=None)

	Dump the merged configuration to a stream or stdout.

	
classmethod from_context(ctx, config_paths=None, project=None)

	Create a configuration object, and initialize the Click context with it.

	
get(name, default=<object object>)

	Return the specified name from the root section.

	Parameters

	
	name (str) – The name of the requested value.

	default (optional) – If set, the default value to use
instead of raising LoggedFailure for
unknown names.

	Returns

	The value for name.

	Raises

	LoggedFailure – The requested name was not found.

	
load()

	Load configuration from the defined locations.

	
locations(exists=True)

	Return the location of the config file(s).

A given directory will be scanned for *.conf files, in alphabetical order.
Any duplicates will be eliminated.

If exists is True, only existing configuration locations are returned.

	
section(ctx, optional=False)

	Return section of the config for a specific context (sub-command).

	Parameters

	
	ctx (Context) – The Click context object.

	optional (bool) – If True, return an empty config object when section is missing.

	Returns

	
	The configuration section belonging to
	the active (sub-)command (based on ctx.info_name).

	Return type

	Section

Contribution Guidelines

Overview

Contributing to this project is easy, and reporting an issue or adding
to the documentation also improves things for every user. You don’t need
to be a developer to contribute.

Reporting issues

Please use the GitHub issue tracker, and describe your problem so that
it can be easily reproduced. Providing relevant version information on
the project itself and your environment helps with that.

Improving documentation

The easiest way to provide examples or related documentation that helps
other users is the GitHub wiki.

If you are comfortable with the Sphinx documentation tool, you can also
prepare a pull request with changes to the core documentation. GitHub’s
built-in text editor makes this especially easy, when you choose the
“Create a new branch for this commit and start a pull request” option
on saving. Small fixes for typos and the like are a matter of minutes
when using that tool.

Code contributions

Here’s a quick guide to improve the code:

	Fork the repo, and clone the fork to your machine.

	Add your improvements, the technical details are further below.

	Run the tests and make sure they’re passing (invoke test).

	Check for violations of code conventions (invoke check).

	Make sure the documentation builds without errors
(invoke build --docs).

	Push to your fork and submit a pull
request [https://help.github.com/articles/using-pull-requests/].

Please be patient while waiting for a review. Life & work tend to
interfere.

Details on contributing code

This project is written in Python [http://www.python.org/], and the
documentation is generated using
Sphinx [https://pypi.python.org/pypi/Sphinx].
setuptools [https://packaging.python.org/en/latest/projects.html#setuptools]
and Invoke [http://www.pyinvoke.org/] are used to build and manage
the project. Tests are written and executed using
pytest [http://pytest.org/] and tox [https://testrun.org/tox/].

Set up a working development environment

To set up a working directory from your own fork, follow these
steps [https://github.com/jhermann/rudiments#contributing], but
replace the repository https URLs with SSH ones that point to your
fork.

For that to work on Debian type systems, you need the git,
python, and python-virtualenv packages installed. Other
distributions are similar.

Add your changes to a feature branch

For any cohesive set of changes, create a new branch based on the
current upstream master, with a name reflecting the essence of your
improvement.

git branch "name-for-my-fixes" origin/master
git checkout "name-for-my-fixes"
… make changes…
invoke ci # check output for broken tests, or PEP8 violations and the like
… commit changes…
git push origin "name-for-my-fixes"

Please don’t create large lumps of unrelated changes in a single pull
request. Also take extra care to avoid spurious changes, like mass
whitespace diffs. All Python sources use spaces to indent, not TABs.

Make sure your changes work

Some things that will increase the chance that your pull request is
accepted:

	Follow style conventions you see used in the source already (and read
PEP8 [http://www.python.org/dev/peps/pep-0008/]).

	Include tests that fail without your code, and pass with it. Only
minor refactoring and documentation changes require no new tests. If
you are adding functionality or fixing a bug, please also add a test
for it!

	Update any documentation or examples impacted by your change.

	Styling conventions and code quality are checked with
invoke check, tests are run using invoke test, and the docs
can be built locally using invoke build --docs.

Following these hints also expedites the whole procedure, since it
avoids unnecessary feedback cycles.

Software License

Copyright © 2015 - 2019 Jürgen Hermann <jh@web.de>

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Full License Text

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "{}"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Copyright {yyyy} {name of copyright owner}

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rudiments	

 	
 	
 rudiments.humanize	

 	
 	
 rudiments.morph	

 	
 	
 rudiments.pysupport	

 	
 	
 rudiments.reamed	

 	
 	
 rudiments.reamed.click	

 	
 	
 rudiments.security	

 	
 	
 rudiments.system	

 	
 	
 rudiments.www	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	Abort

 	abort() (rudiments.reamed.click.Context method)

 	add_argument() (rudiments.reamed.click.OptionParser method)

 	add_command() (rudiments.reamed.click.Group method)

 	add_option() (rudiments.reamed.click.OptionParser method)

 	add_source() (rudiments.reamed.click.CommandCollection method)

 	add_to_parser() (rudiments.reamed.click.Argument method)

 	(rudiments.reamed.click.Option method)

 	(rudiments.reamed.click.Parameter method)

 	AliasedGroup (class in rudiments.reamed.click)

 	allow_extra_args (rudiments.reamed.click.BaseCommand attribute)

 	(rudiments.reamed.click.Context attribute)

 	(rudiments.reamed.click.MultiCommand attribute)

 	
 	allow_interspersed_args (rudiments.reamed.click.BaseCommand attribute)

 	(rudiments.reamed.click.Context attribute)

 	(rudiments.reamed.click.MultiCommand attribute)

 	(rudiments.reamed.click.OptionParser attribute)

 	args (rudiments.reamed.click.Context attribute)

 	Argument (class in rudiments.reamed.click)

 	argument() (in module rudiments.reamed.click)

 	arity() (rudiments.reamed.click.Tuple property)

 	AUTH_MEMOIZE_INPUT (rudiments.security.Credentials attribute)

 	auth_pair() (rudiments.security.Credentials method)

 	auth_valid() (rudiments.security.Credentials method)

B

 	
 	BadArgumentUsage

 	BadOptionUsage

 	
 	BadParameter

 	BaseCommand (class in rudiments.reamed.click)

 	bytes2iec() (in module rudiments.humanize)

C

 	
 	call_on_close() (rudiments.reamed.click.Context method)

 	callback (rudiments.reamed.click.Command attribute)

 	Choice (class in rudiments.reamed.click)

 	clear() (in module rudiments.reamed.click)

 	ClickException

 	close() (rudiments.reamed.click.Context method)

 	coerce_path_result() (rudiments.reamed.click.Path method)

 	collect_usage_pieces() (rudiments.reamed.click.Command method)

 	(rudiments.reamed.click.MultiCommand method)

 	color (rudiments.reamed.click.Context attribute)

 	Command (class in rudiments.reamed.click)

 	command (rudiments.reamed.click.Context attribute)

 	command() (in module rudiments.reamed.click)

 	(rudiments.reamed.click.Group method)

 	command_path() (rudiments.reamed.click.Context property)

 	CommandCollection (class in rudiments.reamed.click)

 	
 	commands (rudiments.reamed.click.Group attribute)

 	Configuration (class in rudiments.reamed.click)

 	confirm() (in module rudiments.reamed.click)

 	confirmation_option() (in module rudiments.reamed.click)

 	consume_value() (rudiments.reamed.click.Parameter method)

 	Context (class in rudiments.reamed.click)

 	context_settings (rudiments.reamed.click.BaseCommand attribute)

 	convert() (rudiments.reamed.click.Choice method)

 	(rudiments.reamed.click.DateTime method)

 	(rudiments.reamed.click.File method)

 	(rudiments.reamed.click.FloatRange method)

 	(rudiments.reamed.click.IntRange method)

 	(rudiments.reamed.click.ParamType method)

 	(rudiments.reamed.click.Path method)

 	(rudiments.reamed.click.Tuple method)

 	Credentials (class in rudiments.security)

 	ctx (rudiments.reamed.click.OptionParser attribute)

D

 	
 	DateTime (class in rudiments.reamed.click)

 	dedent() (rudiments.reamed.click.HelpFormatter method)

 	
 	DEFAULT_CONFIG_OPTS (rudiments.reamed.click.Configuration attribute)

 	DEFAULT_PATH (rudiments.reamed.click.Configuration attribute)

 	dump() (rudiments.reamed.click.Configuration method)

E

 	
 	echo() (in module rudiments.reamed.click)

 	echo_via_pager() (in module rudiments.reamed.click)

 	edit() (in module rudiments.reamed.click)

 	ensure_object() (rudiments.reamed.click.Context method)

 	envvar_list_splitter (rudiments.reamed.click.File attribute)

 	(rudiments.reamed.click.ParamType attribute)

 	(rudiments.reamed.click.Path attribute)

 	
 	exit() (rudiments.reamed.click.Context method)

 	exit_code (rudiments.reamed.click.ClickException attribute)

 	(rudiments.reamed.click.UsageError attribute)

F

 	
 	fail() (rudiments.reamed.click.Context method)

 	(rudiments.reamed.click.ParamType method)

 	File (class in rudiments.reamed.click)

 	FileError

 	find_object() (rudiments.reamed.click.Context method)

 	find_root() (rudiments.reamed.click.Context method)

 	FloatRange (class in rudiments.reamed.click)

 	format_commands() (rudiments.reamed.click.MultiCommand method)

 	format_epilog() (rudiments.reamed.click.Command method)

 	format_filename() (in module rudiments.reamed.click)

 	format_help() (rudiments.reamed.click.Command method)

 	format_help_text() (rudiments.reamed.click.Command method)

 	
 	format_message() (rudiments.reamed.click.BadParameter method)

 	(rudiments.reamed.click.ClickException method)

 	(rudiments.reamed.click.FileError method)

 	(rudiments.reamed.click.MissingParameter method)

 	(rudiments.reamed.click.NoSuchOption method)

 	format_options() (rudiments.reamed.click.Command method)

 	(rudiments.reamed.click.MultiCommand method)

 	format_usage() (rudiments.reamed.click.Command method)

 	forward() (rudiments.reamed.click.Context method)

 	from_context() (rudiments.reamed.click.Configuration class method)

 	full_process_value() (rudiments.reamed.click.Option method)

 	(rudiments.reamed.click.Parameter method)

G

 	
 	get() (rudiments.reamed.click.Configuration method)

 	get_app_dir() (in module rudiments.reamed.click)

 	get_binary_stream() (in module rudiments.reamed.click)

 	get_command() (rudiments.reamed.click.AliasedGroup method)

 	(rudiments.reamed.click.CommandCollection method)

 	(rudiments.reamed.click.Group method)

 	(rudiments.reamed.click.MultiCommand method)

 	get_current_context() (in module rudiments.reamed.click)

 	get_default() (rudiments.reamed.click.Option method)

 	(rudiments.reamed.click.Parameter method)

 	get_error_hint() (rudiments.reamed.click.Argument method)

 	(rudiments.reamed.click.Parameter method)

 	get_help() (rudiments.reamed.click.BaseCommand method)

 	(rudiments.reamed.click.Command method)

 	(rudiments.reamed.click.Context method)

 	get_help_option() (rudiments.reamed.click.Command method)

 	get_help_option_names() (rudiments.reamed.click.Command method)

 	get_help_record() (rudiments.reamed.click.Option method)

 	(rudiments.reamed.click.Parameter method)

 	
 	get_metavar() (rudiments.reamed.click.Choice method)

 	(rudiments.reamed.click.DateTime method)

 	(rudiments.reamed.click.ParamType method)

 	get_missing_message() (rudiments.reamed.click.Choice method)

 	(rudiments.reamed.click.ParamType method)

 	get_os_args() (in module rudiments.reamed.click)

 	get_params() (rudiments.reamed.click.Command method)

 	get_short_help_str() (rudiments.reamed.click.Command method)

 	get_terminal_size() (in module rudiments.reamed.click)

 	get_text_stream() (in module rudiments.reamed.click)

 	get_usage() (rudiments.reamed.click.BaseCommand method)

 	(rudiments.reamed.click.Command method)

 	(rudiments.reamed.click.Context method)

 	get_usage_pieces() (rudiments.reamed.click.Argument method)

 	(rudiments.reamed.click.Parameter method)

 	getchar() (in module rudiments.reamed.click)

 	getvalue() (rudiments.reamed.click.HelpFormatter method)

 	Group (class in rudiments.reamed.click)

 	group() (in module rudiments.reamed.click)

 	(rudiments.reamed.click.Group method)

H

 	
 	handle_parse_result() (rudiments.reamed.click.Parameter method)

 	help_option() (in module rudiments.reamed.click)

 	help_option_names (rudiments.reamed.click.Context attribute)

 	
 	HelpFormatter (class in rudiments.reamed.click)

 	human_readable_name() (rudiments.reamed.click.Argument property)

 	(rudiments.reamed.click.Parameter property)

I

 	
 	iec2bytes() (in module rudiments.humanize)

 	ignore_unknown_options (rudiments.reamed.click.BaseCommand attribute)

 	(rudiments.reamed.click.Context attribute)

 	(rudiments.reamed.click.OptionParser attribute)

 	import_name() (in module rudiments.pysupport)

 	indent() (rudiments.reamed.click.HelpFormatter method)

 	indentation() (rudiments.reamed.click.HelpFormatter method)

 	
 	info_name (rudiments.reamed.click.Context attribute)

 	IntRange (class in rudiments.reamed.click)

 	invoke() (rudiments.reamed.click.BaseCommand method)

 	(rudiments.reamed.click.Command method)

 	(rudiments.reamed.click.Context method)

 	(rudiments.reamed.click.MultiCommand method)

 	invoked_subcommand (rudiments.reamed.click.Context attribute)

 	is_composite (rudiments.reamed.click.ParamType attribute)

L

 	
 	launch() (in module rudiments.reamed.click)

 	list_commands() (rudiments.reamed.click.CommandCollection method)

 	(rudiments.reamed.click.Group method)

 	(rudiments.reamed.click.MultiCommand method)

 	
 	load() (rudiments.reamed.click.Configuration method)

 	load_module() (in module rudiments.pysupport)

 	locations() (rudiments.reamed.click.Configuration method)

 	LoggedFailure

 	lookup_default() (rudiments.reamed.click.Context method)

M

 	
 	main() (rudiments.reamed.click.BaseCommand method)

 	make_context() (rudiments.reamed.click.BaseCommand method)

 	make_formatter() (rudiments.reamed.click.Context method)

 	make_metavar() (rudiments.reamed.click.Argument method)

 	(rudiments.reamed.click.Parameter method)

 	make_parser() (rudiments.reamed.click.Command method)

 	
 	make_pass_decorator() (in module rudiments.reamed.click)

 	MAP (rudiments.reamed.click.AliasedGroup attribute)

 	max_content_width (rudiments.reamed.click.Context attribute)

 	merge_adjacent() (in module rudiments.humanize)

 	meta() (rudiments.reamed.click.Context property)

 	MissingParameter

 	MultiCommand (class in rudiments.reamed.click)

N

 	
 	name (rudiments.reamed.click.BaseCommand attribute)

 	(rudiments.reamed.click.Choice attribute)

 	(rudiments.reamed.click.DateTime attribute)

 	(rudiments.reamed.click.File attribute)

 	(rudiments.reamed.click.FloatRange attribute)

 	(rudiments.reamed.click.IntRange attribute)

 	(rudiments.reamed.click.ParamType attribute)

 	
 	name() (rudiments.reamed.click.Tuple property)

 	NETRC_FILE (rudiments.security.Credentials attribute)

 	NO_DEFAULT (rudiments.reamed.click.Configuration attribute)

 	NoSuchOption

O

 	
 	obj (rudiments.reamed.click.Context attribute)

 	open_file() (in module rudiments.reamed.click)

 	
 	Option (class in rudiments.reamed.click)

 	option() (in module rudiments.reamed.click)

 	OptionParser (class in rudiments.reamed.click)

P

 	
 	param_type_name (rudiments.reamed.click.Argument attribute)

 	(rudiments.reamed.click.Option attribute)

 	(rudiments.reamed.click.Parameter attribute)

 	Parameter (class in rudiments.reamed.click)

 	params (rudiments.reamed.click.Command attribute)

 	(rudiments.reamed.click.Context attribute)

 	ParamType (class in rudiments.reamed.click)

 	parent (rudiments.reamed.click.Context attribute)

 	parse_args() (rudiments.reamed.click.BaseCommand method)

 	(rudiments.reamed.click.Command method)

 	(rudiments.reamed.click.MultiCommand method)

 	(rudiments.reamed.click.OptionParser method)

 	
 	pass_context() (in module rudiments.reamed.click)

 	pass_obj() (in module rudiments.reamed.click)

 	password_option() (in module rudiments.reamed.click)

 	Path (class in rudiments.reamed.click)

 	pause() (in module rudiments.reamed.click)

 	pretty_path() (in module rudiments.reamed.click)

 	process_value() (rudiments.reamed.click.Parameter method)

 	progressbar() (in module rudiments.reamed.click)

 	prompt() (in module rudiments.reamed.click)

 	prompt_for_value() (rudiments.reamed.click.Option method)

 	protected_args (rudiments.reamed.click.Context attribute)

R

 	
 	resilient_parsing (rudiments.reamed.click.Context attribute)

 	resolve_command() (rudiments.reamed.click.MultiCommand method)

 	resolve_envvar_value() (rudiments.reamed.click.Option method)

 	(rudiments.reamed.click.Parameter method)

 	resolve_lazy_flag() (rudiments.reamed.click.File method)

 	result_callback (rudiments.reamed.click.MultiCommand attribute)

 	resultcallback() (rudiments.reamed.click.MultiCommand method)

 	rudiments (module)

 	
 	rudiments.humanize (module)

 	rudiments.morph (module)

 	rudiments.pysupport (module)

 	rudiments.reamed (module)

 	rudiments.reamed.click (module)

 	rudiments.security (module)

 	rudiments.system (module)

 	rudiments.www (module)

S

 	
 	scope() (rudiments.reamed.click.Context method)

 	secho() (in module rudiments.reamed.click)

 	section() (rudiments.reamed.click.Configuration method)

 	(rudiments.reamed.click.HelpFormatter method)

 	serror() (in module rudiments.reamed.click)

 	
 	show() (rudiments.reamed.click.ClickException method)

 	(rudiments.reamed.click.UsageError method)

 	sources (rudiments.reamed.click.CommandCollection attribute)

 	split_envvar_value() (rudiments.reamed.click.ParamType method)

 	style() (in module rudiments.reamed.click)

T

 	
 	terminal_width (rudiments.reamed.click.Context attribute)

 	token_normalize_func (rudiments.reamed.click.Context attribute)

 	
 	Tuple (class in rudiments.reamed.click)

 	type_cast_value() (rudiments.reamed.click.Parameter method)

U

 	
 	unstyle() (in module rudiments.reamed.click)

 	url_as_file() (in module rudiments.www)

 	
 	URL_RE (rudiments.security.Credentials attribute)

 	UsageError

V

 	
 	value_from_envvar() (rudiments.reamed.click.Option method)

 	(rudiments.reamed.click.Parameter method)

 	
 	value_is_missing() (rudiments.reamed.click.Parameter method)

 	version_option() (in module rudiments.reamed.click)

W

 	
 	wrap_text() (in module rudiments.reamed.click)

 	write() (rudiments.reamed.click.HelpFormatter method)

 	write_dl() (rudiments.reamed.click.HelpFormatter method)

 	
 	write_heading() (rudiments.reamed.click.HelpFormatter method)

 	write_paragraph() (rudiments.reamed.click.HelpFormatter method)

 	write_text() (rudiments.reamed.click.HelpFormatter method)

 	write_usage() (rudiments.reamed.click.HelpFormatter method)

rudiments

	rudiments package
	Subpackages
	rudiments.reamed package
	Submodules

	rudiments.reamed.click module

	Submodules

	rudiments.humanize module

	rudiments.morph module

	rudiments.pysupport module

	rudiments.security module

	rudiments.system module

	rudiments.www module

 nav.xhtml

 Table of Contents

 		
 Welcome to the “Rudiments” manual!

 		
 Using rudiments

 		
 Web Access Helpers

 		
 Security Helpers

 		
 Credentials Lookup

 		
 Humanized Input and Output

 		
 Python Runtime Support

 		
 Operating System Related Extensions

 		
 Extensions to 3rd Party Libraries

 		
 Extensions to Click

 		
 End-User Documentation

 		
 Configuration of Authentication Credentials

 		
 Credentials Lookup Details

 		
 Installation Procedures

 		
 Changelog

 		
 Complete API Reference

 		
 rudiments package

 		
 Subpackages

 		
 Submodules

 		
 rudiments.humanize module

 		
 rudiments.morph module

 		
 rudiments.pysupport module

 		
 rudiments.security module

 		
 rudiments.system module

 		
 rudiments.www module

 		
 Contribution Guidelines

 		
 Overview

 		
 Reporting issues

 		
 Improving documentation

 		
 Code contributions

 		
 Details on contributing code

 		
 Set up a working development environment

 		
 Add your changes to a feature branch

 		
 Make sure your changes work

 		
 Software License

 		
 Full License Text

_static/file.png

_static/logo.png

_static/minus.png

_static/plus.png

_images/logo.png

